ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12364
20
0

Spatiotemporal Multi-scale Bilateral Motion Network for Gait Recognition

26 September 2022
Xinnan Ding
Shan Du
Yu Zhang
Ke Wang
    CVBM
ArXivPDFHTML
Abstract

The critical goal of gait recognition is to acquire the inter-frame walking habit representation from the gait sequences. The relations between frames, however, have not received adequate attention in comparison to the intra-frame features. In this paper, motivated by optical flow, the bilateral motion-oriented features are proposed, which can allow the classic convolutional structure to have the capability to directly portray gait movement patterns at the feature level. Based on such features, we develop a set of multi-scale temporal representations that force the motion context to be richly described at various levels of temporal resolution. Furthermore, a correction block is devised to eliminate the segmentation noise of silhouettes for getting more precise gait information. Subsequently, the temporal feature set and the spatial features are combined to comprehensively characterize gait processes. Extensive experiments are conducted on CASIA-B and OU-MVLP datasets, and the results achieve an outstanding identification performance, which has demonstrated the effectiveness of the proposed approach.

View on arXiv
Comments on this paper