ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12882
16
0

Approximate Description Length, Covering Numbers, and VC Dimension

26 September 2022
Amit Daniely
Gal Katzhendler
ArXivPDFHTML
Abstract

Recently, Daniely and Granot [arXiv:1910.05697] introduced a new notion of complexity called Approximate Description Length (ADL). They used it to derive novel generalization bounds for neural networks, that despite substantial work, were out of reach for more classical techniques such as discretization, Covering Numbers and Rademacher Complexity. In this paper we explore how ADL relates to classical notions of function complexity such as Covering Numbers and VC Dimension. We find that for functions whose range is the reals, ADL is essentially equivalent to these classical complexity measures. However, this equivalence breaks for functions with high dimensional range.

View on arXiv
Comments on this paper