ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.13912
12
2

Hierarchical MixUp Multi-label Classification with Imbalanced Interdisciplinary Research Proposals

28 September 2022
Meng Xiao
Minjie Wu
Ziyue Qiao
Zhiyuan Ning
Yi Du
Yanjie Fu
Yuanchun Zhou
ArXivPDFHTML
Abstract

Funding agencies are largely relied on a topic matching between domain experts and research proposals to assign proposal reviewers. As proposals are increasingly interdisciplinary, it is challenging to profile the interdisciplinary nature of a proposal, and, thereafter, find expert reviewers with an appropriate set of expertise. An essential step in solving this challenge is to accurately model and classify the interdisciplinary labels of a proposal. Existing methodological and application-related literature, such as textual classification and proposal classification, are insufficient in jointly addressing the three key unique issues introduced by interdisciplinary proposal data: 1) the hierarchical structure of discipline labels of a proposal from coarse-grain to fine-grain, e.g., from information science to AI to fundamentals of AI. 2) the heterogeneous semantics of various main textual parts that play different roles in a proposal; 3) the number of proposals is imbalanced between non-interdisciplinary and interdisciplinary research. Can we simultaneously address the three issues in understanding the proposal's interdisciplinary nature? In response to this question, we propose a hierarchical mixup multiple-label classification framework, which we called H-MixUp. H-MixUp leverages a transformer-based semantic information extractor and a GCN-based interdisciplinary knowledge extractor for the first and second issues. H-MixUp develops a fused training method of Wold-level MixUp, Word-level CutMix, Manifold MixUp, and Document-level MixUp to address the third issue.

View on arXiv
Comments on this paper