ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.13925
14
8

DeViT: Deformed Vision Transformers in Video Inpainting

28 September 2022
Jiayin Cai
Changlin Li
Xin Tao
Chun Yuan
Yu-Wing Tai
    ViT
ArXivPDFHTML
Abstract

This paper proposes a novel video inpainting method. We make three main contributions: First, we extended previous Transformers with patch alignment by introducing Deformed Patch-based Homography (DePtH), which improves patch-level feature alignments without additional supervision and benefits challenging scenes with various deformation. Second, we introduce Mask Pruning-based Patch Attention (MPPA) to improve patch-wised feature matching by pruning out less essential features and using saliency map. MPPA enhances matching accuracy between warped tokens with invalid pixels. Third, we introduce a Spatial-Temporal weighting Adaptor (STA) module to obtain accurate attention to spatial-temporal tokens under the guidance of the Deformation Factor learned from DePtH, especially for videos with agile motions. Experimental results demonstrate that our method outperforms recent methods qualitatively and quantitatively and achieves a new state-of-the-art.

View on arXiv
Comments on this paper