ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.14719
29
0

In Search of Projectively Equivariant Networks

29 September 2022
Georg Bökman
Axel Flinth
Fredrik Kahl
ArXivPDFHTML
Abstract

Equivariance of linear neural network layers is well studied. In this work, we relax the equivariance condition to only be true in a projective sense. We propose a way to construct a projectively equivariant neural network through building a standard equivariant network where the linear group representations acting on each intermediate feature space are "multiplicatively modified lifts" of projective group representations. By theoretically studying the relation of projectively and linearly equivariant linear layers, we show that our approach is the most general possible when building a network out of linear layers. The theory is showcased in two simple experiments.

View on arXiv
Comments on this paper