ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01578
31
6

Cooperative Self-Training for Multi-Target Adaptive Semantic Segmentation

4 October 2022
Yangsong Zhang
Subhankar Roy
Hongtao Lu
Elisa Ricci
Stéphane Lathuilière
    TTA
ArXivPDFHTML
Abstract

In this work we address multi-target domain adaptation (MTDA) in semantic segmentation, which consists in adapting a single model from an annotated source dataset to multiple unannotated target datasets that differ in their underlying data distributions. To address MTDA, we propose a self-training strategy that employs pseudo-labels to induce cooperation among multiple domain-specific classifiers. We employ feature stylization as an efficient way to generate image views that forms an integral part of self-training. Additionally, to prevent the network from overfitting to noisy pseudo-labels, we devise a rectification strategy that leverages the predictions from different classifiers to estimate the quality of pseudo-labels. Our extensive experiments on numerous settings, based on four different semantic segmentation datasets, validate the effectiveness of the proposed self-training strategy and show that our method outperforms state-of-the-art MTDA approaches. Code available at: https://github.com/Mael-zys/CoaST

View on arXiv
Comments on this paper