ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01594
16
7

GANTouch: An Attack-Resilient Framework for Touch-based Continuous Authentication System

2 October 2022
M. Agrawal
P. Mehrotra
Rajesh Kumar
R. Shah
ArXivPDFHTML
Abstract

Previous studies have shown that commonly studied (vanilla) implementations of touch-based continuous authentication systems (V-TCAS) are susceptible to active adversarial attempts. This study presents a novel Generative Adversarial Network assisted TCAS (G-TCAS) framework and compares it to the V-TCAS under three active adversarial environments viz. Zero-effort, Population, and Random-vector. The Zero-effort environment was implemented in two variations viz. Zero-effort (same-dataset) and Zero-effort (cross-dataset). The first involved a Zero-effort attack from the same dataset, while the second used three different datasets. G-TCAS showed more resilience than V-TCAS under the Population and Random-vector, the more damaging adversarial scenarios than the Zero-effort. On average, the increase in the false accept rates (FARs) for V-TCAS was much higher (27.5% and 21.5%) than for G-TCAS (14% and 12.5%) for Population and Random-vector attacks, respectively. Moreover, we performed a fairness analysis of TCAS for different genders and found TCAS to be fair across genders. The findings suggest that we should evaluate TCAS under active adversarial environments and affirm the usefulness of GANs in the TCAS pipeline.

View on arXiv
Comments on this paper