ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01634
11
2

Type theory in human-like learning and inference

4 October 2022
Felix Sosa
T. Ullman
    ReLM
    LRM
ArXivPDFHTML
Abstract

Humans can generate reasonable answers to novel queries (Schulz, 2012): if I asked you what kind of food you want to eat for lunch, you would respond with a food, not a time. The thought that one would respond "After 4pm" to "What would you like to eat" is either a joke or a mistake, and seriously entertaining it as a lunch option would likely never happen in the first place. While understanding how people come up with new ideas, thoughts, explanations, and hypotheses that obey the basic constraints of a novel search space is of central importance to cognitive science, there is no agreed-on formal model for this kind of reasoning. We propose that a core component of any such reasoning system is a type theory: a formal imposition of structure on the kinds of computations an agent can perform, and how they're performed. We motivate this proposal with three empirical observations: adaptive constraints on learning and inference (i.e. generating reasonable hypotheses), how people draw distinctions between improbability and impossibility, and people's ability to reason about things at varying levels of abstraction.

View on arXiv
Comments on this paper