ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01840
26
6

Detecting Anomalies within Smart Buildings using Do-It-Yourself Internet of Things

4 October 2022
Yasar Majib
M. Barhamgi
B. Heravi
S. Kariyawasam
Charith Perera
ArXivPDFHTML
Abstract

Detecting anomalies at the time of happening is vital in environments like buildings and homes to identify potential cyber-attacks. This paper discussed the various mechanisms to detect anomalies as soon as they occur. We shed light on crucial considerations when building machine learning models. We constructed and gathered data from multiple self-build (DIY) IoT devices with different in-situ sensors and found effective ways to find the point, contextual and combine anomalies. We also discussed several challenges and potential solutions when dealing with sensing devices that produce data at different sampling rates and how we need to pre-process them in machine learning models. This paper also looks at the pros and cons of extracting sub-datasets based on environmental conditions.

View on arXiv
Comments on this paper