ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02200
13
47

Machine learning in bioprocess development: From promise to practice

4 October 2022
L. M. Helleckes
J. Hemmerich
W. Wiechert
E. Lieres
A. Grünberger
ArXivPDFHTML
Abstract

Fostered by novel analytical techniques, digitalization and automation, modern bioprocess development provides high amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.

View on arXiv
Comments on this paper