ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.03460
17
1

Flexible Alignment Super-Resolution Network for Multi-Contrast MRI

7 October 2022
Yiming Liu
Mengxi Zhang
Weiqin Zhang
B. Jiang
Bo Hou
Dan Liu
Jie Chen
Heqing Lian
    MedIm
ArXivPDFHTML
Abstract

Magnetic resonance imaging plays an essential role in clinical diagnosis by acquiring the structural information of biological tissue. Recently, many multi-contrast MRI super-resolution networks achieve good effects. However, most studies ignore the impact of the inappropriate foreground scale and patch size of multi-contrast MRI, which probably leads to inappropriate feature alignment. To tackle this problem, we propose the Flexible Alignment Super-Resolution Network (FASR-Net) for multi-contrast MRI Super-Resolution. The Flexible Alignment module of FASR-Net consists of two modules for feature alignment. (1) The Single-Multi Pyramid Alignment(S-A) module solves the situation where low-resolution (LR) images and reference (Ref) images have different scales. (2) The Multi-Multi Pyramid Alignment(M-A) module solves the situation where LR and Ref images have the same scale. Besides, we propose the Cross-Hierarchical Progressive Fusion (CHPF) module aiming at fusing the features effectively, further improving the image quality. Compared with other state-of-the-art methods, FASR-net achieves the most competitive results on FastMRI and IXI datasets. Our code will be available at \href{https://github.com/yimingliu123/FASR-Net}{https://github.com/yimingliu123/FASR-Net}.

View on arXiv
Comments on this paper