ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04214
23
7

VM-NeRF: Tackling Sparsity in NeRF with View Morphing

9 October 2022
M. Bortolon
Alessio Del Bue
Fabio Poiesi
ArXivPDFHTML
Abstract

NeRF aims to learn a continuous neural scene representation by using a finite set of input images taken from various viewpoints. A well-known limitation of NeRF methods is their reliance on data: the fewer the viewpoints, the higher the likelihood of overfitting. This paper addresses this issue by introducing a novel method to generate geometrically consistent image transitions between viewpoints using View Morphing. Our VM-NeRF approach requires no prior knowledge about the scene structure, as View Morphing is based on the fundamental principles of projective geometry. VM-NeRF tightly integrates this geometric view generation process during the training procedure of standard NeRF approaches. Notably, our method significantly improves novel view synthesis, particularly when only a few views are available. Experimental evaluation reveals consistent improvement over current methods that handle sparse viewpoints in NeRF models. We report an increase in PSNR of up to 1.8dB and 1.0dB when training uses eight and four views, respectively. Source code: \url{https://github.com/mbortolon97/VM-NeRF}

View on arXiv
Comments on this paper