ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04843
11
0

Multi-Modal Fusion by Meta-Initialization

10 October 2022
Matthew Jackson
Shreshth A. Malik
Michael T. Matthews
Yousuf Mohamed-Ahmed
ArXivPDFHTML
Abstract

When experience is scarce, models may have insufficient information to adapt to a new task. In this case, auxiliary information - such as a textual description of the task - can enable improved task inference and adaptation. In this work, we propose an extension to the Model-Agnostic Meta-Learning algorithm (MAML), which allows the model to adapt using auxiliary information as well as task experience. Our method, Fusion by Meta-Initialization (FuMI), conditions the model initialization on auxiliary information using a hypernetwork, rather than learning a single, task-agnostic initialization. Furthermore, motivated by the shortcomings of existing multi-modal few-shot learning benchmarks, we constructed iNat-Anim - a large-scale image classification dataset with succinct and visually pertinent textual class descriptions. On iNat-Anim, FuMI significantly outperforms uni-modal baselines such as MAML in the few-shot regime. The code for this project and a dataset exploration tool for iNat-Anim are publicly available at https://github.com/s-a-malik/multi-few .

View on arXiv
Comments on this paper