ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04889
13
10

Turbo Training with Token Dropout

10 October 2022
Tengda Han
Weidi Xie
Andrew Zisserman
    ViT
ArXivPDFHTML
Abstract

The objective of this paper is an efficient training method for video tasks. We make three contributions: (1) We propose Turbo training, a simple and versatile training paradigm for Transformers on multiple video tasks. (2) We illustrate the advantages of Turbo training on action classification, video-language representation learning, and long-video activity classification, showing that Turbo training can largely maintain competitive performance while achieving almost 4X speed-up and significantly less memory consumption. (3) Turbo training enables long-schedule video-language training and end-to-end long-video training, delivering competitive or superior performance than previous works, which were infeasible to train under limited resources.

View on arXiv
Comments on this paper