ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05074
60
0
v1v2 (latest)

On Uniform Confidence Intervals for the Tail Index and the Extreme Quantile

11 October 2022
Yuya Sasaki
Yulong Wang
ArXiv (abs)PDFHTML
Abstract

This paper presents two results concerning uniform confidence intervals for the tail index and the extreme quantile. First, we show that it is impossible to construct a length-optimal confidence interval satisfying the correct uniform coverage over a local non-parametric family of tail distributions. Second, in light of the impossibility result, we construct honest confidence intervals that are uniformly valid by incorporating the worst-case bias in the local non-parametric family. The proposed method is applied to simulated data and a real data set of National Vital Statistics from National Center for Health Statistics.

View on arXiv
Comments on this paper