ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06787
14
0

Observed Adversaries in Deep Reinforcement Learning

13 October 2022
Eugene Lim
Harold Soh
    AAML
ArXivPDFHTML
Abstract

In this work, we point out the problem of observed adversaries for deep policies. Specifically, recent work has shown that deep reinforcement learning is susceptible to adversarial attacks where an observed adversary acts under environmental constraints to invoke natural but adversarial observations. This setting is particularly relevant for HRI since HRI-related robots are expected to perform their tasks around and with other agents. In this work, we demonstrate that this effect persists even with low-dimensional observations. We further show that these adversarial attacks transfer across victims, which potentially allows malicious attackers to train an adversary without access to the target victim.

View on arXiv
Comments on this paper