10
9

Tencent AI Lab - Shanghai Jiao Tong University Low-Resource Translation System for the WMT22 Translation Task

Abstract

This paper describes Tencent AI Lab - Shanghai Jiao Tong University (TAL-SJTU) Low-Resource Translation systems for the WMT22 shared task. We participate in the general translation task on English\LeftrightarrowLivonian. Our system is based on M2M100 with novel techniques that adapt it to the target language pair. (1) Cross-model word embedding alignment: inspired by cross-lingual word embedding alignment, we successfully transfer a pre-trained word embedding to M2M100, enabling it to support Livonian. (2) Gradual adaptation strategy: we exploit Estonian and Latvian as auxiliary languages for many-to-many translation training and then adapt to English-Livonian. (3) Data augmentation: to enlarge the parallel data for English-Livonian, we construct pseudo-parallel data with Estonian and Latvian as pivot languages. (4) Fine-tuning: to make the most of all available data, we fine-tune the model with the validation set and online back-translation, further boosting the performance. In model evaluation: (1) We find that previous work underestimated the translation performance of Livonian due to inconsistent Unicode normalization, which may cause a discrepancy of up to 14.9 BLEU score. (2) In addition to the standard validation set, we also employ round-trip BLEU to evaluate the models, which we find more appropriate for this task. Finally, our unconstrained system achieves BLEU scores of 17.0 and 30.4 for English to/from Livonian.

View on arXiv
Comments on this paper