ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.09524
14
3

SVLDL: Improved Speaker Age Estimation Using Selective Variance Label Distribution Learning

18 October 2022
Zuheng Kang
Jianzong Wang
Junqing Peng
Jing Xiao
ArXivPDFHTML
Abstract

Estimating age from a single speech is a classic and challenging topic. Although Label Distribution Learning (LDL) can represent adjacent indistinguishable ages well, the uncertainty of the age estimate for each utterance varies from person to person, i.e., the variance of the age distribution is different. To address this issue, we propose selective variance label distribution learning (SVLDL) method to adapt the variance of different age distributions. Furthermore, the model uses WavLM as the speech feature extractor and adds the auxiliary task of gender recognition to further improve the performance. Two tricks are applied on the loss function to enhance the robustness of the age estimation and improve the quality of the fitted age distribution. Extensive experiments show that the model achieves state-of-the-art performance on all aspects of the NIST SRE08-10 and a real-world datasets.

View on arXiv
Comments on this paper