ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.10027
22
17

Maestro-U: Leveraging joint speech-text representation learning for zero supervised speech ASR

18 October 2022
Zhehuai Chen
Ankur Bapna
Andrew Rosenberg
Yu Zhang
Bhuvana Ramabhadran
Pedro J. Moreno
Nanxin Chen
ArXivPDFHTML
Abstract

Training state-of-the-art Automated Speech Recognition (ASR) models typically requires a substantial amount of transcribed speech. In this work, we demonstrate that a modality-matched joint speech and text model can be leveraged to train a massively multilingual ASR model without any supervised (manually transcribed) speech for some languages. This paper explores the use of jointly learnt speech and text representations in a massively multilingual, zero supervised speech, real-world setting to expand the set of languages covered by ASR with only unlabeled speech and text in the target languages. Using the FLEURS dataset, we define the task to cover 102102102 languages, where transcribed speech is available in 525252 of these languages and can be used to improve end-to-end ASR quality on the remaining 505050. First, we show that by combining speech representations with byte-level text representations and use of language embeddings, we can dramatically reduce the Character Error Rate (CER) on languages with no supervised speech from 64.8\% to 30.8\%, a relative reduction of 53\%. Second, using a subset of South Asian languages we show that Maestro-U can promote knowledge transfer from languages with supervised speech even when there is limited to no graphemic overlap. Overall, Maestro-U closes the gap to oracle performance by 68.5\% relative and reduces the CER of 19 languages below 15\%.

View on arXiv
Comments on this paper