ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.10314
13
6

Two-stage training method for Japanese electrolaryngeal speech enhancement based on sequence-to-sequence voice conversion

19 October 2022
D. Ma
Lester Phillip Violeta
Kazuhiro Kobayashi
T. Toda
ArXivPDFHTML
Abstract

Sequence-to-sequence (seq2seq) voice conversion (VC) models have greater potential in converting electrolaryngeal (EL) speech to normal speech (EL2SP) compared to conventional VC models. However, EL2SP based on seq2seq VC requires a sufficiently large amount of parallel data for the model training and it suffers from significant performance degradation when the amount of training data is insufficient. To address this issue, we suggest a novel, two-stage strategy to optimize the performance on EL2SP based on seq2seq VC when a small amount of the parallel dataset is available. In contrast to utilizing high-quality data augmentations in previous studies, we first combine a large amount of imperfect synthetic parallel data of EL and normal speech, with the original dataset into VC training. Then, a second stage training is conducted with the original parallel dataset only. The results show that the proposed method progressively improves the performance of EL2SP based on seq2seq VC.

View on arXiv
Comments on this paper