ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11034
22
8

Enhancing Out-of-Distribution Detection in Natural Language Understanding via Implicit Layer Ensemble

20 October 2022
Hyunsoo Cho
Choonghyun Park
Jaewoo Kang
Kang Min Yoo
Taeuk Kim
Sang-goo Lee
    OODD
ArXivPDFHTML
Abstract

Out-of-distribution (OOD) detection aims to discern outliers from the intended data distribution, which is crucial to maintaining high reliability and a good user experience. Most recent studies in OOD detection utilize the information from a single representation that resides in the penultimate layer to determine whether the input is anomalous or not. Although such a method is straightforward, the potential of diverse information in the intermediate layers is overlooked. In this paper, we propose a novel framework based on contrastive learning that encourages intermediate features to learn layer-specialized representations and assembles them implicitly into a single representation to absorb rich information in the pre-trained language model. Extensive experiments in various intent classification and OOD datasets demonstrate that our approach is significantly more effective than other works.

View on arXiv
Comments on this paper