ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11218
22
2

Explainable Multi-Agent Recommendation System for Energy-Efficient Decision Support in Smart Homes

20 October 2022
Alona Zharova
Annika Boer
Julia Knoblauch
Kai Ingo Schewina
Jana Vihs
ArXivPDFHTML
Abstract

Understandable and persuasive recommendations support the electricity consumers' behavioral change to tackle the energy efficiency problem. Generating load shifting recommendations for household appliances as explainable increases the transparency and trustworthiness of the system. This paper proposes an explainable multi-agent recommendation system for load shifting for household appliances. First, we provide agents with enhanced predictive capacity by including weather data, applying state-of-the-art models, and tuning the hyperparameters. Second, we suggest an Explainability Agent providing transparent recommendations. We also provide an overview of the predictive and explainability performance. Third, we discuss the impact and scaling potential of the suggested approach.

View on arXiv
Comments on this paper