ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11940
20
31

JRDB-Pose: A Large-scale Dataset for Multi-Person Pose Estimation and Tracking

20 October 2022
Edward Vendrow
Duy-Tho Le
Jianfei Cai
Hamid Rezatofighi
ArXivPDFHTML
Abstract

Autonomous robotic systems operating in human environments must understand their surroundings to make accurate and safe decisions. In crowded human scenes with close-up human-robot interaction and robot navigation, a deep understanding requires reasoning about human motion and body dynamics over time with human body pose estimation and tracking. However, existing datasets either do not provide pose annotations or include scene types unrelated to robotic applications. Many datasets also lack the diversity of poses and occlusions found in crowded human scenes. To address this limitation we introduce JRDB-Pose, a large-scale dataset and benchmark for multi-person pose estimation and tracking using videos captured from a social navigation robot. The dataset contains challenge scenes with crowded indoor and outdoor locations and a diverse range of scales and occlusion types. JRDB-Pose provides human pose annotations with per-keypoint occlusion labels and track IDs consistent across the scene. A public evaluation server is made available for fair evaluation on a held-out test set. JRDB-Pose is available at https://jrdb.erc.monash.edu/ .

View on arXiv
Comments on this paper