ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11999
14
8

On-Board Pedestrian Trajectory Prediction Using Behavioral Features

21 October 2022
Phillip Czech
Markus Braun
U. Kressel
Bin Yang
ArXivPDFHTML
Abstract

This paper presents a novel approach to pedestrian trajectory prediction for on-board camera systems, which utilizes behavioral features of pedestrians that can be inferred from visual observations. Our proposed method, called Behavior-Aware Pedestrian Trajectory Prediction (BA-PTP), processes multiple input modalities, i.e. bounding boxes, body and head orientation of pedestrians as well as their pose, with independent encoding streams. The encodings of each stream are fused using a modality attention mechanism, resulting in a final embedding that is used to predict future bounding boxes in the image. In experiments on two datasets for pedestrian behavior prediction, we demonstrate the benefit of using behavioral features for pedestrian trajectory prediction and evaluate the effectiveness of the proposed encoding strategy. Additionally, we investigate the relevance of different behavioral features on the prediction performance based on an ablation study.

View on arXiv
Comments on this paper