ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12061
74
2
v1v2 (latest)

Validation of Composite Systems by Discrepancy Propagation

21 October 2022
David Reeb
Kanil Patel
Karim Barsim
Martin Schiegg
S. Gerwinn
ArXiv (abs)PDFHTML
Abstract

Assessing the validity of a real-world system with respect to given quality criteria is a common yet costly task in industrial applications due to the vast number of required real-world tests. Validating such systems by means of simulation offers a promising and less expensive alternative, but requires an assessment of the simulation accuracy and therefore end-to-end measurements. Additionally, covariate shifts between simulations and actual usage can cause difficulties for estimating the reliability of such systems. In this work, we present a validation method that propagates bounds on distributional discrepancy measures through a composite system, thereby allowing us to derive an upper bound on the failure probability of the real system from potentially inaccurate simulations. Each propagation step entails an optimization problem, where -- for measures such as maximum mean discrepancy (MMD) -- we develop tight convex relaxations based on semidefinite programs. We demonstrate that our propagation method yields valid and useful bounds for composite systems exhibiting a variety of realistic effects. In particular, we show that the proposed method can successfully account for data shifts within the experimental design as well as model inaccuracies within the simulation.

View on arXiv
Comments on this paper