ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12338
106
12

Open-domain Question Answering via Chain of Reasoning over Heterogeneous Knowledge

22 October 2022
Kaixin Ma
Hao Cheng
Xiaodong Liu
Eric Nyberg
Jianfeng Gao
    LRM
ArXivPDFHTML
Abstract

We propose a novel open-domain question answering (ODQA) framework for answering single/multi-hop questions across heterogeneous knowledge sources. The key novelty of our method is the introduction of the intermediary modules into the current retriever-reader pipeline. Unlike previous methods that solely rely on the retriever for gathering all evidence in isolation, our intermediary performs a chain of reasoning over the retrieved set. Specifically, our method links the retrieved evidence with its related global context into graphs and organizes them into a candidate list of evidence chains. Built upon pretrained language models, our system achieves competitive performance on two ODQA datasets, OTT-QA and NQ, against tables and passages from Wikipedia. In particular, our model substantially outperforms the previous state-of-the-art on OTT-QA with an exact match score of 47.3 (45 % relative gain).

View on arXiv
Comments on this paper