ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12828
24
6

Towards Pragmatic Production Strategies for Natural Language Generation Tasks

23 October 2022
Mario Giulianelli
ArXiv (abs)PDFHTML
Abstract

This position paper proposes a conceptual framework for the design of Natural Language Generation (NLG) systems that follow efficient and effective production strategies in order to achieve complex communicative goals. In this general framework, efficiency is characterised as the parsimonious regulation of production and comprehension costs while effectiveness is measured with respect to task-oriented and contextually grounded communicative goals. We provide concrete suggestions for the estimation of goals, costs, and utility via modern statistical methods, demonstrating applications of our framework to the classic pragmatic task of visually grounded referential games and to abstractive text summarisation, two popular generation tasks with real-world applications. In sum, we advocate for the development of NLG systems that learn to make pragmatic production decisions from experience, by reasoning about goals, costs, and utility in a human-like way.

View on arXiv
Comments on this paper