ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15158
29
11

Streaming Voice Conversion Via Intermediate Bottleneck Features And Non-streaming Teacher Guidance

27 October 2022
Yuan-Jui Chen
Ming Tu
Tang-Chun Li
Xin Li
Qiuqiang Kong
Jiaxin Li
Zhichao Wang
Qiao Tian
Yuping Wang
Yuxuan Wang
ArXivPDFHTML
Abstract

Streaming voice conversion (VC) is the task of converting the voice of one person to another in real-time. Previous streaming VC methods use phonetic posteriorgrams (PPGs) extracted from automatic speech recognition (ASR) systems to represent speaker-independent information. However, PPGs lack the prosody and vocalization information of the source speaker, and streaming PPGs contain undesired leaked timbre of the source speaker. In this paper, we propose to use intermediate bottleneck features (IBFs) to replace PPGs. VC systems trained with IBFs retain more prosody and vocalization information of the source speaker. Furthermore, we propose a non-streaming teacher guidance (TG) framework that addresses the timbre leakage problem. Experiments show that our proposed IBFs and the TG framework achieve a state-of-the-art streaming VC naturalness of 3.85, a content consistency of 3.77, and a timbre similarity of 3.77 under a future receptive field of 160 ms which significantly outperform previous streaming VC systems.

View on arXiv
Comments on this paper