ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15446
11
6

LP-BFGS attack: An adversarial attack based on the Hessian with limited pixels

26 October 2022
Jiebao Zhang
Wenhua Qian
Ren-qi Nie
Jinde Cao
Dan Xu
    AAML
ArXivPDFHTML
Abstract

Deep neural networks are vulnerable to adversarial attacks. Most L0L_{0}L0​-norm based white-box attacks craft perturbations by the gradient of models to the input. Since the computation cost and memory limitation of calculating the Hessian matrix, the application of Hessian or approximate Hessian in white-box attacks is gradually shelved. In this work, we note that the sparsity requirement on perturbations naturally lends itself to the usage of Hessian information. We study the attack performance and computation cost of the attack method based on the Hessian with a limited number of perturbation pixels. Specifically, we propose the Limited Pixel BFGS (LP-BFGS) attack method by incorporating the perturbation pixel selection strategy and the BFGS algorithm. Pixels with top-k attribution scores calculated by the Integrated Gradient method are regarded as optimization variables of the LP-BFGS attack. Experimental results across different networks and datasets demonstrate that our approach has comparable attack ability with reasonable computation in different numbers of perturbation pixels compared with existing solutions.

View on arXiv
Comments on this paper