ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15471
8
4

Adaptive Estimation of Graphical Models under Total Positivity

27 October 2022
Jiaxi Ying
José Vinícius de Miranda Cardoso
Daniel P. Palomar
ArXivPDFHTML
Abstract

We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices \citep{lauritzen2019maximum,slawski2015estimation} and even one observation for diagonally dominant M-matrices \citep{truell2021maximum}. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted ℓ1\ell_1ℓ1​-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.

View on arXiv
Comments on this paper