ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15678
17
2

Prototype-Based Layered Federated Cross-Modal Hashing

27 October 2022
Jiale Liu
Yu-Wei Zhan
Xin Luo
Zhen-Duo Chen
Yongxin Wang
Xin-Shun Xu
    FedML
ArXivPDFHTML
Abstract

Recently, deep cross-modal hashing has gained increasing attention. However, in many practical cases, data are distributed and cannot be collected due to privacy concerns, which greatly reduces the cross-modal hashing performance on each client. And due to the problems of statistical heterogeneity, model heterogeneity, and forcing each client to accept the same parameters, applying federated learning to cross-modal hash learning becomes very tricky. In this paper, we propose a novel method called prototype-based layered federated cross-modal hashing. Specifically, the prototype is introduced to learn the similarity between instances and classes on server, reducing the impact of statistical heterogeneity (non-IID) on different clients. And we monitor the distance between local and global prototypes to further improve the performance. To realize personalized federated learning, a hypernetwork is deployed on server to dynamically update different layers' weights of local model. Experimental results on benchmark datasets show that our method outperforms state-of-the-art methods.

View on arXiv
Comments on this paper