ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15876
14
2

Random Utterance Concatenation Based Data Augmentation for Improving Short-video Speech Recognition

28 October 2022
Yist Y. Lin
Tao Han
Haihua Xu
Van Tung Pham
Yerbolat Khassanov
Tze Yuang Chong
Yi He
Lu Lu
Zejun Ma
ArXivPDFHTML
Abstract

One of limitations in end-to-end automatic speech recognition (ASR) framework is its performance would be compromised if train-test utterance lengths are mismatched. In this paper, we propose an on-the-fly random utterance concatenation (RUC) based data augmentation method to alleviate train-test utterance length mismatch issue for short-video ASR task. Specifically, we are motivated by observations that our human-transcribed training utterances tend to be much shorter for short-video spontaneous speech (~3 seconds on average), while our test utterance generated from voice activity detection front-end is much longer (~10 seconds on average). Such a mismatch can lead to suboptimal performance. Empirically, it's observed the proposed RUC method significantly improves long utterance recognition without performance drop on short one. Overall, it achieves 5.72% word error rate reduction on average for 15 languages and improved robustness to various utterance length.

View on arXiv
Comments on this paper