ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.16643
13
3

XNOR-FORMER: Learning Accurate Approximations in Long Speech Transformers

29 October 2022
Roshan S. Sharma
Bhiksha Raj
ArXivPDFHTML
Abstract

Transformers are among the state of the art for many tasks in speech, vision, and natural language processing, among others. Self-attentions, which are crucial contributors to this performance have quadratic computational complexity, which makes training on longer input sequences challenging. Prior work has produced state-of-the-art transformer variants with linear attention, however, current models sacrifice performance to achieve efficient implementations. In this work, we develop a novel linear transformer by examining the properties of the key-query product within self-attentions. Our model outperforms state of the art approaches on speech recognition and speech summarization, resulting in 1 % absolute WER improvement on the Librispeech-100 speech recognition benchmark and a new INTERVIEW speech recognition benchmark, and 5 points on ROUGE for summarization with How2.

View on arXiv
Comments on this paper