Several decision points exist in business processes (e.g., whether a purchase
order needs a manager's approval or not), and different decisions are made for
different process instances based on their characteristics (e.g., a purchase
order higher than 500needsamanagerapproval).Decisionmininginprocessminingaimstodescribe/predicttheroutingofaprocessinstanceatadecisionpointoftheprocess.Bypredictingthedecision,onecantakeproactiveactionstoimprovetheprocess.Forinstance,whenabottleneckisdevelopinginoneofthepossibledecisions,onecanpredictthedecisionandbypassthebottleneck.However,despiteitshugepotentialforsuchoperationalsupport,existingtechniquesfordecisionmininghavefocusedlargelyondescribingdecisionsbutnotonpredictingthem,deployingdecisiontreestoproducelogicalexpressionstoexplainthedecision.Inthiswork,weaimtoenhancethepredictivecapabilityofdecisionminingtoenableproactiveoperationalsupportbydeployingmoreadvancedmachinelearningalgorithms.OurproposedapproachprovidesexplanationsofthepredicteddecisionsusingSHAPvaluestosupporttheelicitationofproactiveactions.WehaveimplementedaWebapplicationtosupporttheproposedapproachandevaluatedtheapproachusingtheimplementation.