ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.00481
13
6

Multi-Resource Allocation for On-Device Distributed Federated Learning Systems

1 November 2022
Yulan Gao
Ziqiang Ye
Han Yu
Zehui Xiong
Yue Xiao
Dusit Niyato
    FedML
ArXivPDFHTML
Abstract

This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system. Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively, to minimize the objective of system subject to the computation/communication budget and a target latency requirement. In particular, mobile devices are connect via wireless TCP/IP architectures. Exploiting the optimization problem structure, the problem can be decomposed to two convex sub-problems. Drawing on the Lagrangian dual and harmony search techniques, we characterize the global optimal solution by the closed-form solutions to all sub-problems, which give qualitative insights to multi-resource tradeoff. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm.

View on arXiv
Comments on this paper