149
v1v2 (latest)

Trustworthy Representation Learning via Information Funnels and Bottlenecks

Machine-mediated learning (ML), 2022
Main:25 Pages
17 Figures
Bibliography:4 Pages
1 Tables
Abstract

Ensuring trustworthiness in machine learning -- by balancing utility, fairness, and privacy -- remains a critical challenge, particularly in representation learning. In this work, we investigate a family of closely related information-theoretic objectives, including information funnels and bottlenecks, designed to extract invariant representations from data. We introduce the Conditional Privacy Funnel with Side-information (CPFSI), a novel formulation within this family, applicable in both fully and semi-supervised settings. Given the intractability of these objectives, we derive neural-network-based approximations via amortized variational inference. We systematically analyze the trade-offs between utility, invariance, and representation fidelity, offering new insights into the Pareto frontiers of these methods. Our results demonstrate that CPFSI effectively balances these competing objectives and frequently outperforms existing approaches. Furthermore, we show that by intervening on sensitive attributes in CPFSI's predictive posterior enhances fairness while maintaining predictive performance. Finally, we focus on the real-world applicability of these approaches, particularly for learning robust and fair representations from tabular datasets in data scarce-environments -- a modality where these methods are often especially relevant.

View on arXiv
Comments on this paper