ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01827
17
5

Demo: LE3D: A Privacy-preserving Lightweight Data Drift Detection Framework

3 November 2022
Ioannis Mavromatis
Aftab Khan
ArXivPDFHTML
Abstract

This paper presents LE3D; a novel data drift detection framework for preserving data integrity and confidentiality. LE3D is a generalisable platform for evaluating novel drift detection mechanisms within the Internet of Things (IoT) sensor deployments. Our framework operates in a distributed manner, preserving data privacy while still being adaptable to new sensors with minimal online reconfiguration. Our framework currently supports multiple drift estimators for time-series IoT data and can easily be extended to accommodate new data types and drift detection mechanisms. This demo will illustrate the functionality of LE3D under a real-world-like scenario.

View on arXiv
Comments on this paper