361

Once-for-All Sequence Compression for Self-Supervised Speech Models

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022
Abstract

The sequence length along the time axis is often the dominant factor of the computational cost of self-supervised speech models. Works have been proposed to reduce the sequence length for lowering the computational cost. However, different downstream tasks have different tolerance of sequence compressing, so a model that produces a fixed compressing rate may not fit all tasks. In this work, we introduce a once-for-all (OFA) sequence compression framework for self-supervised speech models that supports a continuous range of compressing rates. The framework is evaluated on various tasks, showing marginal degradation compared to the fixed compressing rate variants with a smooth performance-efficiency trade-off. We further explore adaptive compressing rate learning, demonstrating the ability to select task-specific preferred frame periods without needing a grid search.

View on arXiv
Comments on this paper