ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.02812
11
1

Evaluation of Automated Speech Recognition Systems for Conversational Speech: A Linguistic Perspective

5 November 2022
H. Pasandi
Haniyeh B. Pasandi
ArXivPDFHTML
Abstract

Automatic speech recognition (ASR) meets more informal and free-form input data as voice user interfaces and conversational agents such as the voice assistants such as Alexa, Google Home, etc., gain popularity. Conversational speech is both the most difficult and environmentally relevant sort of data for speech recognition. In this paper, we take a linguistic perspective, and take the French language as a case study toward disambiguation of the French homophones. Our contribution aims to provide more insight into human speech transcription accuracy in conditions to reproduce those of state-of-the-art ASR systems, although in a much focused situation. We investigate a case study involving the most common errors encountered in the automatic transcription of French language.

View on arXiv
Comments on this paper