ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.02952
17
1

A Comparative Analysis of the Face Recognition Methods in Video Surveillance Scenarios

5 November 2022
O. Eker
Murat Bal
    CVBM
ArXivPDFHTML
Abstract

Facial recognition is fundamental for a wide variety of security systems operating in real-time applications. In video surveillance based face recognition, face images are typically captured over multiple frames in uncontrolled conditions; where head pose, illumination, shadowing, motion blur and focus change over the sequence. We can generalize that the three fundamental operations involved in the facial recognition tasks: face detection, face alignment and face recognition. This study presents comparative benchmark tables for the state-of-art face recognition methods by testing them with same backbone architecture in order to focus only on the face recognition solution instead of network architecture. For this purpose, we constructed a video surveillance dataset of face IDs that has high age variance, intra-class variance (face make-up, beard, etc.) with native surveillance facial imagery data for evaluation. On the other hand, this work discovers the best recognition methods for different conditions like non-masked faces, masked faces, and faces with glasses.

View on arXiv
Comments on this paper