ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.05543
13
2

Vis2Mus: Exploring Multimodal Representation Mapping for Controllable Music Generation

10 November 2022
Runbang Zhang
Yixiao Zhang
Kai Shao
Ying Shan
Gus Xia
ArXivPDFHTML
Abstract

In this study, we explore the representation mapping from the domain of visual arts to the domain of music, with which we can use visual arts as an effective handle to control music generation. Unlike most studies in multimodal representation learning that are purely data-driven, we adopt an analysis-by-synthesis approach that combines deep music representation learning with user studies. Such an approach enables us to discover \textit{interpretable} representation mapping without a huge amount of paired data. In particular, we discover that visual-to-music mapping has a nice property similar to equivariant. In other words, we can use various image transformations, say, changing brightness, changing contrast, style transfer, to control the corresponding transformations in the music domain. In addition, we released the Vis2Mus system as a controllable interface for symbolic music generation.

View on arXiv
Comments on this paper