294

Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object Detection

Computer Vision and Pattern Recognition (CVPR), 2022
Abstract

With the vigorous development of computer vision, oriented object detection has gradually been featured. In this paper, a novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately predict the orientation of objects, along with a dual-frequency version PSCD. By mapping rotational periodicity of different cycles into phase of different frequencies, we provide a unified framework for various periodic fuzzy problems in oriented object detection. Upon such framework, common problems in oriented object detection such as boundary discontinuity and square-like problems are elegantly solved in a unified form. Visual analysis and experiments on three datasets prove the effectiveness and the potentiality of our approach. When facing scenarios requiring high-quality bounding boxes, the proposed methods are expected to give a competitive performance. The codes are publicly available at https://github.com/open-mmlab/mmrotate.

View on arXiv
Comments on this paper