ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.06678
12
0

Learning dynamical systems: an example from open quantum system dynamics

12 November 2022
P. Novelli
    AI4CE
ArXivPDFHTML
Abstract

Machine learning algorithms designed to learn dynamical systems from data can be used to forecast, control and interpret the observed dynamics. In this work we exemplify the use of one of such algorithms, namely Koopman operator learning, in the context of open quantum system dynamics. We will study the dynamics of a small spin chain coupled with dephasing gates and show how Koopman operator learning is an approach to efficiently learn not only the evolution of the density matrix, but also of every physical observable associated to the system. Finally, leveraging the spectral decomposition of the learned Koopman operator, we show how symmetries obeyed by the underlying dynamics can be inferred directly from data.

View on arXiv
Comments on this paper