ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07321
322
21
v1v2v3 (latest)

MT4SSL: Boosting Self-Supervised Speech Representation Learning by Integrating Multiple Targets

Interspeech (Interspeech), 2022
14 November 2022
Ziyang Ma
Zhisheng Zheng
Changli Tang
Yujin Wang
Xie Chen
ArXiv (abs)PDFHTML
Abstract

In this paper, we provide a new perspective on self-supervised speech models from how the training targets are obtained. We generalize the targets extractor into Offline Targets Extractor (Off-TE) and Online Targets Extractor (On-TE). Based on this, we propose a new multi-tasking learning framework for self-supervised learning, MT4SSL, which stands for Boosting Self-Supervised Speech Representation Learning by Integrating Multiple Targets. MT4SSL uses the K-means algorithm as an Off-TE and a teacher network without gradients as an On-TE, respectively. Our model outperforms previous SSL methods by nontrivial margins on the LibriSpeech benchmark, and is comparable to or even better than the best-performing models with fewer data. Furthermore, we find that using both Off-TE and On-TE results in better convergence in the pre-training phase. With both effectiveness and efficiency, we think doing multi-task learning on self-supervised speech models from our perspective is a promising trend.

View on arXiv
Comments on this paper