ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07321
15
20

MT4SSL: Boosting Self-Supervised Speech Representation Learning by Integrating Multiple Targets

14 November 2022
Ziyang Ma
Zhisheng Zheng
Changli Tang
Yujin Wang
Xie Chen
ArXivPDFHTML
Abstract

In this paper, we provide a new perspective on self-supervised speech models from how the training targets are obtained. We generalize the targets extractor into Offline Targets Extractor (Off-TE) and Online Targets Extractor (On-TE). Based on this, we propose a new multi-tasking learning framework for self-supervised learning, MT4SSL, which stands for Boosting Self-Supervised Speech Representation Learning by Integrating Multiple Targets. MT4SSL uses the K-means algorithm as an Off-TE and a teacher network without gradients as an On-TE, respectively. Our model outperforms previous SSL methods by nontrivial margins on the LibriSpeech benchmark, and is comparable to or even better than the best-performing models with fewer data. Furthermore, we find that using both Off-TE and On-TE results in better convergence in the pre-training phase. With both effectiveness and efficiency, we think doing multi-task learning on self-supervised speech models from our perspective is a promising trend.

View on arXiv
Comments on this paper