ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07534
20
2

High-Resource Methodological Bias in Low-Resource Investigations

14 November 2022
Maartje ter Hoeve
David Grangier
Natalie Schluter
ArXivPDFHTML
Abstract

The central bottleneck for low-resource NLP is typically regarded to be the quantity of accessible data, overlooking the contribution of data quality. This is particularly seen in the development and evaluation of low-resource systems via down sampling of high-resource language data. In this work we investigate the validity of this approach, and we specifically focus on two well-known NLP tasks for our empirical investigations: POS-tagging and machine translation. We show that down sampling from a high-resource language results in datasets with different properties than the low-resource datasets, impacting the model performance for both POS-tagging and machine translation. Based on these results we conclude that naive down sampling of datasets results in a biased view of how well these systems work in a low-resource scenario.

View on arXiv
Comments on this paper