ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08120
18
1
v1v2 (latest)

On the trace ratio method and Fisher's discriminant analysis for robust multigroup classification

15 November 2022
G. Ferrandi
Igor V. Kravchenko
M. Hochstenbach
M. R. Oliveira
ArXiv (abs)PDFHTML
Abstract

We compare two different linear dimensionality reduction strategies for the multigroup classification problem: the trace ratio method and Fisher's discriminant analysis. Recently, trace ratio optimization has gained in popularity due to its computational efficiency, as well as the occasionally better classification results. However, a statistical understanding is still incomplete. We study and compare the properties of the two methods. Then, we propose a robust version of the trace ratio method, to handle the presence of outliers in the data. We reinterpret an asymptotic perturbation bound for the solution to the trace ratio, in a contamination setting. Finally, we compare the performance of the trace ratio method and Fisher's discriminant analysis on both synthetic and real datasets, using classical and robust estimators.

View on arXiv
Comments on this paper