ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08398
8
2

Structured Knowledge Distillation Towards Efficient and Compact Multi-View 3D Detection

14 November 2022
Linfeng Zhang
Yukang Shi
Hung-Shuo Tai
Zhipeng Zhang
Yuan He
Ke Wang
Kaisheng Ma
ArXivPDFHTML
Abstract

Detecting 3D objects from multi-view images is a fundamental problem in 3D computer vision. Recently, significant breakthrough has been made in multi-view 3D detection tasks. However, the unprecedented detection performance of these vision BEV (bird's-eye-view) detection models is accompanied with enormous parameters and computation, which make them unaffordable on edge devices. To address this problem, in this paper, we propose a structured knowledge distillation framework, aiming to improve the efficiency of modern vision-only BEV detection models. The proposed framework mainly includes: (a) spatial-temporal distillation which distills teacher knowledge of information fusion from different timestamps and views, (b) BEV response distillation which distills teacher response to different pillars, and (c) weight-inheriting which solves the problem of inconsistent inputs between students and teacher in modern transformer architectures. Experimental results show that our method leads to an average improvement of 2.16 mAP and 2.27 NDS on the nuScenes benchmark, outperforming multiple baselines by a large margin.

View on arXiv
Comments on this paper