ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09997
39
5
v1v2 (latest)

Beyond ExaBricks: GPU Volume Path Tracing of AMR Data

18 November 2022
Stefan Zellmann
Qi Wu
Alper Sahistan
Kwan-Liu Ma
Ingo Wald
ArXiv (abs)PDFHTML
Abstract

Adaptive Mesh Refinement (AMR) is becoming a prevalent data representation for scientific visualization. Resulting from large fluid mechanics simulations, the data is usually cell centric, imposing a number of challenges for high quality reconstruction at sample positions. While recent work has concentrated on real-time volume and isosurface rendering on GPUs, the rendering methods used still focus on simple lighting models without scattering events and global illumination. As in other areas of rendering, key to real-time performance are acceleration data structures; in this work we analyze the major bottlenecks of data structures that were originally optimized for camera/primary ray traversal when used with the incoherent ray tracing workload of a volumetric path tracer, and propose strategies to overcome the challenges coming with this.

View on arXiv
Comments on this paper