ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10054
13
4

Decorr: Environment Partitioning for Invariant Learning and OOD Generalization

18 November 2022
Yufan Liao
Qi Wu
Zhaodi Wu
Xing Yan
ArXivPDFHTML
Abstract

Invariant learning methods, aimed at identifying a consistent predictor across multiple environments, are gaining prominence in out-of-distribution (OOD) generalization. Yet, when environments aren't inherent in the data, practitioners must define them manually. This environment partitioning--algorithmically segmenting the training dataset into environments--crucially affects invariant learning's efficacy but remains underdiscussed. Proper environment partitioning could broaden the applicability of invariant learning and enhance its performance. In this paper, we suggest partitioning the dataset into several environments by isolating low-correlation data subsets. Through experiments with synthetic and real data, our Decorr method demonstrates superior performance in combination with invariant learning. Decorr mitigates the issue of spurious correlations, aids in identifying stable predictors, and broadens the applicability of invariant learning methods.

View on arXiv
Comments on this paper