ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10738
11
76

Knowledge Graph Contrastive Learning Based on Relation-Symmetrical Structure

19 November 2022
K. Liang
Yue Liu
Sihang Zhou
Wenxuan Tu
Yi Wen
Xihong Yang
Xiang Dong
Xinwang Liu
ArXivPDFHTML
Abstract

Knowledge graph embedding (KGE) aims at learning powerful representations to benefit various artificial intelligence applications. Meanwhile, contrastive learning has been widely leveraged in graph learning as an effective mechanism to enhance the discriminative capacity of the learned representations. However, the complex structures of KG make it hard to construct appropriate contrastive pairs. Only a few attempts have integrated contrastive learning strategies with KGE. But, most of them rely on language models ( e.g., Bert) for contrastive pair construction instead of fully mining information underlying the graph structure, hindering expressive ability. Surprisingly, we find that the entities within a relational symmetrical structure are usually similar and correlated. To this end, we propose a knowledge graph contrastive learning framework based on relation-symmetrical structure, KGE-SymCL, which mines symmetrical structure information in KGs to enhance the discriminative ability of KGE models. Concretely, a plug-and-play approach is proposed by taking entities in the relation-symmetrical positions as positive pairs. Besides, a self-supervised alignment loss is designed to pull together positive pairs. Experimental results on link prediction and entity classification datasets demonstrate that our KGE-SymCL can be easily adopted to various KGE models for performance improvements. Moreover, extensive experiments show that our model could outperform other state-of-the-art baselines.

View on arXiv
Comments on this paper